Cryptic Diversity and Conservation of Gopher Frogs across the Southeastern United States

Stephen C. Richter1, Eric M. O’Neill2,3, Schyler O. Nunziata1,2, Andrew Rumments1, Emily S. Gustin1, Jeanne E. Young4, and Brian I. Crother5

Identifying cryptic biodiversity is fundamental to evolutionary biology and to conservation efforts. This study investigated range-wide genetic diversity of Gopher Frogs, Lithobates capito, across the southeastern United States coastal plain to determine implications for taxonomy and conservation. We collected data for two mtDNA regions in 21 populations to identify genetic structure across the geographic distribution of the species. Based on population genetic, phylogenetic, and genealogical analyses, we recovered three reciprocally monophyletic mtDNA lineages corresponding to mainland coastal plain populations and two lineages within peninsular Florida. Breakpoints for these lineages did not occur in previously identified hotspots of amphibian phylogeographic breaks and did not follow currently recognized subspecies designations. We recommend these lineages be recognized as separate distinct population segments and be considered separately by the U.S. Fish and Wildlife Service for listing under the Endangered Species Act. Additionally, we propose an evolutionary hotspot for amphibians that deserves further attention.

A

N important aim in evolutionary biology and conservation is to identify cryptic biodiversity and understand how genetic variation within species is partitioned into populations and lineages and how historic geological, environmental, and biological processes influence genetic structure (Nelson, 1974; Avise, 1992; Kozak et al., 2008; Rissler and Smith, 2010). Comparative phylogeography has revealed geographic regions with phylogeographic breaks for multiple codistributed taxa (Avise, 1992; Swenson and Howard, 2005; Rissler and Smith, 2010). These breakpoints provide evidence that many taxa have similar evolutionary responses to biogeographic and environmental conditions and can be used to develop a priori hypotheses about predicted lineage breaks in unstudied species. Multiple breakpoints have been identified in the southeastern United States (Avise, 1992; Walker and Avise, 1998; Swenson and Howard, 2005), including hotspots for amphibian species (Rissler and Smith, 2010). In the southeastern coastal plain these areas include the Apalachicola basin in western Florida, the Mobile basin in Alabama, and northern peninsular Florida (Gilbert, 1987; Avise, 1992; Walker and Avise, 1998; Young and Crother, 2001; Pauly et al., 2007).

In this study, we investigated the phylogeographic patterns of gopher frogs, Lithobates capito, an endemic species of the Gulf and Atlantic Coastal Plains of the United States. Three subspecies of L. capito were historically recognized, the Carolina Gopher Frog, L. capito capito; the Florida Gopher Frog, L. c. aesopus; and the Dusky Gopher Frog, L. c. sevusus. However, current classification considers L. capito a single species, with no taxonomic breaks (Young and Crother, 2001; Frost et al., 2012), which might not account for cryptic genetic variation across the species’ range.

Populations of L. capito have declined across much of its range at greater rates than other sympatric amphibian species because of habitat modification and destruction (Jensen and Richter, 2005). Lithobates capito is listed as IUCN near threatened and has a reduced distribution in North Carolina, South Carolina, Georgia, Florida (non-peninsular), and Alabama, and many populations are geographically isolated (Hammerson and Jensen, 2004; Jensen and Richter, 2005; Krysko et al., unpubl.). Peninsular Florida is the only portion of the range where the species’ status appears stable (Jensen and Richter, 2005; Krysko et al., unpubl.). As a result, L. capito was recently petitioned for federal listing.

Species-level conservation risks loss of cryptic biodiversity in the form of distinct populations or genetic lineages (Purvis et al., 2005). The Endangered Species Act allows listing of distinct population segments of vertebrates that can be independently protected as threatened or endangered. Distinct genetic lineages that are geographically separate may be listed as distinct population segments, if warranted based on current status of the lineage (e.g., May et al., 2011). Because gopher frogs are in decline across much of their range, identification and protection of distinct population segments might be critical for preventing further range reduction.

Our objectives were to investigate the population genetic and phylogeographic pattern of L. capito across its range and determine implications for conservation. We analyzed two mtDNA regions and predicted to recover a phylogeographic breakpoint at the Apalachicola River basin based on congruence with other codistributed taxa (Avise, 1992; Rissler and Smith, 2010). Given the disparity of the species’ status across the southeastern US, it is important to identify and protect all lineages of gopher frogs.

MATERIALS AND METHODS

Tissue samples were collected from localities throughout the range of L. capito (Fig. 1; Table 1). DNA was extracted from all tissues using the Qiagen DNEasy tissue protocol (Qiagen,
We performed a partitioned Bayesian analysis to determine whether known populations of *L. capito* were inferred with the mtDNA analysis. We performed hierarchically at the individual level. Specifically, data from each cluster was used as input for subsequent analyses until no further structure could be detected. We also generated a 95% parsimony haplotype network in TCS v. 1.21. This allowed us to visualize genealogical relationships of haplotypes at the population level. We then overlaid haplotypes on populations across the range to determine the relationship between geography and genealogy.

Phylogenetic analyses.—We performed a partitioned Bayesian phylogenetic analysis on the concatenated mtDNA dataset including all individuals using MrBayes v3.2 (Ronquist et al., 2011). Evolutionary models for both mtDNA regions were chosen using the Bayesian Information Criterion in jModelTest 2.1.3 (Darriba et al., 2012). For the MrBayes analyses, two independent runs, each with four Markov chains, were used with the default temperature parameter of 0.2. Default priors were used with random trees to start each Markov chain. Chains were run for one million generations with topology and model parameter estimates sampled every 100 generations. The first 25% of the sampled trees from each of the two runs were discarded as burn-in, yielding a posterior distribution of 15,000 sampled trees. Convergence was assessed using the standard deviation of split frequencies and the potential scale reduction factors (see MrBayes v3.2 manual available from: http://www.mrbayes.sourceforge.net/mr3.2_manual.pdf).

Estimating divergence times.—To determine whether known geological events can explain the observed phylogeographic patterns, we used linkage divergence times estimated using MrBayes v3.2. First, we tested the strict molecular clock model against the non-clock model by comparing the harmonic means of the marginal likelihoods of these two models using a Bayes Factor comparison in MrBayes v3.2. The harmonic mean of the marginal likelihood of the strict clock model was 35 log likelihood units better than the non-clock model. A difference exceeding 5 log likelihood units is considered strong evidence in favor of the better model.

Table 1. Populations of *Lithobates capito* and *L. areolatus* sampled for mtDNA analysis.

<table>
<thead>
<tr>
<th>Population</th>
<th>County</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL1</td>
<td>Covington</td>
<td>Lithobates capito</td>
</tr>
<tr>
<td>FL1</td>
<td>Okaloosa</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL2</td>
<td>Duval</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL4</td>
<td>Alachua</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL8</td>
<td>Leon</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL9</td>
<td>Pasco</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL10</td>
<td>Polk</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL11</td>
<td>St. Lucie</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL12</td>
<td>Martin</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL13</td>
<td>Sarasota</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL14</td>
<td>Osceola</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL15</td>
<td>Putnam</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL16</td>
<td>Hernando</td>
<td>L. capito</td>
</tr>
<tr>
<td>FL17</td>
<td>Polk</td>
<td>L. capito</td>
</tr>
<tr>
<td>GA1</td>
<td>Chattahoochee</td>
<td>L. capito</td>
</tr>
<tr>
<td>GA2</td>
<td>Baker</td>
<td>L. capito</td>
</tr>
<tr>
<td>GA6</td>
<td>Taylor</td>
<td>L. capito</td>
</tr>
<tr>
<td>GA7</td>
<td>Long</td>
<td>L. capito</td>
</tr>
<tr>
<td>NC3</td>
<td>Carteret</td>
<td>L. capito</td>
</tr>
<tr>
<td>NC4</td>
<td>Pender</td>
<td>L. capito</td>
</tr>
<tr>
<td>SC1</td>
<td>Aiken</td>
<td>L. capito</td>
</tr>
<tr>
<td>MO1</td>
<td>Cass</td>
<td>L. areolatus</td>
</tr>
<tr>
<td>OK1</td>
<td>Tulsa</td>
<td>L. areolatus</td>
</tr>
</tbody>
</table>
We therefore used the strict clock model to estimate divergence times between the major clades of interest. No fossil calibrated mutation rate for ND2 is available for *Lithobates*; therefore, we followed Macey et al. (1998) and Schoville et al. (2011) by using two substitution rates, 0.57% and 0.69% per million years, which represent minimum and maximum estimates from a wide range of vertebrate ectotherms. We only used the ND2 data for estimating divergence times because similar estimates of mutation rates were not available for the control region.

RESULTS

The final alignment included 50 sequences and was 1305 bp in length (ND2 = 830 bp; CR = 475 bp). Because of missing data for some sequences, the mean ungapped sequence length was 1249 bp (Min = 1140; Max = 1303). Uncorrected sequence divergence between *L. areolata* and *L. capito* was 10.3–11.1%.

The initial mixture analysis from BAPS v.6 (Corander et al., 2008), including all *L. capito*, resulted in two groups in the optimal partition (marginal likelihood = −2316.0613; Fig. 2). Group one included Alabama, Georgia, South Carolina, North Carolina, and the panhandle of Florida. Hierarchical clustering of this group resulted in no further resolution. Group two included all populations in peninsular Florida. Hierarchical clustering of this group resulted in two additional groups: a northern peninsular group (FL2, FL4, FL23) and a southern peninsular group (FL11, FL12, FL24, FL19, FL20, FL21, FL22, FL25; marginal likelihood = −908.998).

The best-fit models, chosen by jModelTest 2.1.1, for ND2 and CR were HKY and TrN+I, respectively. After one million generations, the average standard deviation of the split frequencies between the two MrBayes runs was <0.01 and the potential scale reduction factors for all parameters were ≥1.00, indicating that the two runs had converged onto a stationary distribution.

The phylogenetic analysis of mtDNA resulted in a monophyletic *L. capito* containing three highly supported (PP = 1.0) allopatric clades, which match completely with the three groups identified in the hierarchical BAPS analysis (Fig. 3). Because these clades/groups are well supported by both population genetic and phylogeographic analyses, these likely represent independent lineages that have been genetically isolated from one another for a considerable length of time. One clade occurs in the coastal plain of...
Mississippi, Alabama, Georgia, South Carolina, North Carolina, and the panhandle of Florida and is hereafter referred to as the Coastal Plain Lineage. The second clade is located in northeastern Florida, while the third clade occurs in southern peninsular Florida referred to hereafter as the Northern Peninsular Lineage and Southern Peninsular Lineage, respectively. Several additional well-supported clades exist within these major clades; however, these were either not allopatric with respect to other samples, or not consistent with the results from BAPS, suggesting that these clades do not represent independent organismal lineages.

Divergence time between the Coastal Plain and the two Peninsular Lineages was estimated to be 1.9–2.3 mya, and between Northern Peninsular and Southern Peninsular Lineages was estimated to be 1.1–1.3 mya depending on the mutation rate used (Table 2). Corrected pairwise sequence divergence between L. areolata and the ingroup was 22.3–26.1%. Corrected sequence divergence between the Coastal Plain and Peninsular Lineages was 6.3–8.9%. Corrected sequence divergence between the Peninsular Lineages was 2.3–4.7%.

Genealogical patterns recovered with the 95% parsimony haplotype network corroborated phylogenetic and BAPS analyses with two networks that correspond to the Coastal Lineage and the two Peninsular Lineages (Fig. 4). Nineteen of the 24 haplotypes found were from single populations (Fig. 5). The most likely ancestral haplotypes were haplotype C in the Coastal Plain Lineage (in populations FL8, GA2, and GA6; Fig. 5) and haplotype M in the Northern Peninsular Lineage (in populations FL2, FL15, and FL4). Within the Coastal Plain Lineage, haplotypes A–F were primarily found in the west and G–K primarily in the east (Fig. 5); the haplotype network depicts their genealogical affinities (Fig. 4). However, haplotypes E, F, and H were found in eastern populations AL1, GA1, and GA6 but shared a genealogical affinity with western haplotypes (Figs. 4, 5). This supports the hypothesis of southern Alabama and southwestern Georgia as a contact zone for two coastal plain lineages.

DISCUSSION

Historical biogeographic factors have influenced gopher frog distribution and genetic connectivity across the geographic range. The mitochondrial DNA delineated three allopatric lineages within the range of L. capito: the Coastal Plain Lineage in the mainland US coastal plain, and the Northern and Southern Peninsular Lineages in peninsular Florida, which make up a monophyletic group. The lineages we recovered do not follow geographic boundaries of previously recognized subspecies of L. capito, thus we concur with Young and Crother (2001) that subspecific designations should be disregarded.

Based on historical biogeography of Florida, we estimate that the separation between the Coastal Plain Lineage and Peninsular Lineages formed when gopher frog habitat in peninsular Florida was isolated from the rest of the coastal plain, which occurred from the late Pliocene to early Pleistocene (i.e., 2.5–3 Mya; MacNeil, 1950; Neill, 1957; Gilbert, 1987; reviewed in Webb, 1990). This corresponds

Table 2. Divergence time in millions of years using ND2 data only. Top values are for mutation rate/ma of 0.69% and bottom values are for 0.57%. The 95% Highest Posterior Density (HPD) is presented as a credibility interval for each analysis.

<table>
<thead>
<tr>
<th>Lineages</th>
<th>Mean</th>
<th>Median</th>
<th>95% HPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Plain vs. two Peninsular Lineages</td>
<td>1.9</td>
<td>1.9</td>
<td>1.3–2.4</td>
</tr>
<tr>
<td>Peninsular Lineages</td>
<td>2.3</td>
<td>2.3</td>
<td>1.4–3.1</td>
</tr>
<tr>
<td>Northern Peninsula vs.</td>
<td>1.1</td>
<td>1.0</td>
<td>0.7–1.5</td>
</tr>
<tr>
<td>Southern Peninsular Lineages</td>
<td>1.3</td>
<td>1.2</td>
<td>0.8–1.8</td>
</tr>
</tbody>
</table>

Fig. 4. Genealogical patterns represented by a 95% parsimony haplotype network for the Coastal Plain Lineage (left network) and the Northern and Southern Peninsular lineages (right network). Geographic distribution of haplotypes are depicted in Figure 5.

Fig. 5. Distribution of haplotypes (letters) with hypothesized genetic lineage boundaries (dotted lines) overlaid on geographic distribution and sampling localities of Lithobates capito. See Table 1 for site locations and Figure 4 for haplotype network. Nineteen haplotypes are unique to a single population. Five haplotypes are shared among multiple populations (represented by underlined letters).
A. cingulatum has been peti-
ted during the last glacial
tions: the northernmost-
L. capito parsimony networks. Addi-
as a distinct species from
P. axanthus

235

Lithobates capito

Pseudobranchus

study); eastern newts,
Notophthalmus perstriatus

contact zones in northern peninsular Florida: striped newts,
Rissler and Smith (2010) but have lineage breakpoints or

coastal plain have been studied with sufficient sampling. Four
distributed from the central peninsula into the mainland
et al., 2007). (3) Seven of the 28 amphibian species currently

important and we feel that additional research will reveal it
as a hotspot for amphibians for the following reasons. (1)
Only five of the 40 amphibian species included in Rissler and
Smith (2010) are distributed into mid-peninsular Florida, and
only two of these were originally studied across the peninsula
to mainland. Neither species had a breakpoint in this region,
but for one species with insufficient sampling, southern

cricket frogs (Acris gryllus), the one population sampled from
central Florida was a sister taxon to all other populations of
the species (Gamble et al., 2008). (2) Although flatwoods
salamanders, A. cingulatum, are not distributed into central
Florida, the Suwanee River is a phylogeographic break (Pauly
et al., 2007). (3) Seven of the 28 amphibian species currently
distributed from the central peninsula into the mainland
coastal plain have been studied with sufficient sampling. Four
of these seven species were not included in the analyses of
Rissler and Smith (2010) but have lineage breakpoints or
contact zones in northern peninsular Florida: striped newts,
Notophthalmus perstriatus; May et al., 2011; gopher frogs (this
study); eastern newts, N. viridescens (Takahashi et al., unpubl.);
and northern and southern dwarf sirens, Pseudobranchus
striatus and P. axanthus (Liu et al., 2006). Additionally, other
co-distributed taxa have a similar genetic break at the
Suwanee River in northern Florida, including plants (Sewell
et al., 1996; Maskas and Cruzan, 2000), turtles (Walker and
Avise, 1998; Roman et al., 1999; Clossio et al., 2012), and
mammals (Avise et al., 1983; Ellsworth et al., 1994).

The two genetic breaks we recovered did not correspond
to our predicted location, the Apalachicola River basin, but
this region is evolutionarily important for the species.
The Apalachicola River extends north into the Flint River
basin in southern Alabama and southwestern Georgia and
corresponds to a contact-zone hotspot for amphibians
(Rissler and Smith, 2010; Newman and Rissler, 2011) and
other organisms (Remington, 1968; Swenson and Howard,
2005). This area represents a contact zone for gopher frogs as
demonstrated by Alabama and western Georgia populations
containing the most common haplotypes and haplotypes
from this region clustering with eastern and western coastal
plain populations on the phylogenetic tree.

Although we did not find reciprocal monophyly of groups
within the Coastal Plain Lineage, presence of unique east
and west haplotypes suggests there were potentially two
lineages, presumably separated during the last glacial
maximum (100,000–20,000 ya; Jackson et al., 2000). The
biogeographic history of the Coastal Plain Lineage is further
informed by disjunct populations: the northernmost-
recorded populations of L. capito are just west of the
Appalachian Mountains in the Cumberland Plateau of
central Tennessee (Miller and Campbell, 1996) and Ridge
and Valley Province of Alabama (Mount, 1975; Fig. 1). The
Plateau has isolated areas of animal and plant species
characteristic of the southeastern US coastal plain that
represent relics of interglacial periods and high sea levels of
the Pleistocene (Jones, 1989; Corser, 2008). Although we
were unable to obtain samples from these disjunct popula-
tions (none have been captured since the 1990s), we predict
that they would strengthen support for a western coastal
plain lineage.

The uncorrected sequence divergence between crawfish
and gopher frogs (10.3–11.1%) was at a level expected
for different species. Within gopher frogs, the maximum
uncorrected sequence divergence (4.3%) was relatively high
but not as high as others have found for delineating new
species. For example, Pauly et al. (2007) described Ambysto-
ma bishopi as a distinct species from A. cingulatum based on
morphological, nuclear, and mtDNA data with an mtDNA
uncorrected sequence divergence of 5.6–6.2%. We recom-

mend future research assess nuclear and morphological
characters to address species-level questions within gopher
frogs, especially given that the genealogical analyses
resulted in two separate 95% parsimony networks. Addi-
tionally, although our study strongly delineates three
lineages, all of which occur in Florida, further genetic data
are required to determine the actual breakpoints among
them. A large number of extant populations in the putative
contact zone provide an opportunity for study, and we
predict this zone will be in the southern Central Highlands
because these ridges and existing, unsampled populations
connect sampled populations from our Northern and
Southern Peninsular Lineages.

Conservation and management.—Our study has direct impli-
cations for conservation and management. Our data support
the recognition of coastal plain populations as a genetically
distinct evolutionarily significant unit (ESU) from the two
Peninsular Florida ESUs. Lithobates capito has been peti-
tioned for federal listing under the Endangered Species Act,
and the Act allows for the listing of distinct population
segments (DPS) of vertebrate species. We recommend that
the US Fish and Wildlife Service consider the Coastal Plain,
Northern Peninsular, and Southern Peninsular ESUs as DPSs
and evaluate their status individually if it determines that
the entire species does not warrant federal protection.
Peninsular Florida is the only region where the status of L.
capito is stable, and it has more populations (>100 known;
K. Enge, pers. comm.) than the rest of the range combined. Based on current status of the species in Alabama (three known populations; M. Bailey, pers. comm.), Georgia (16 known populations; J. Jensen, pers. comm.), panhandle Florida (23 known populations; K. Enge, pers. comm.), South Carolina (<10 known populations; S. Bennett, pers. comm.), and North Carolina (seven known populations; M. Sisson, pers. comm.), the Coastal Plain DPS warrants immediate listing. We agree with Pennock and Dimmick (1997) that delineation of DPSs should not be limited to determination of ESUs based on genetic data, but sufficient evidence exists to delineate the coastal plain populations as a DPS based on a geographical break that corresponds to our genetic data.

This study also has implications for management of gopher frogs, specifically to informing translocation practices. A Florida Fish and Wildlife Conservation Commission (FWC) policy has allowed statewide translocation of gopher frogs as commensals of gopher tortoises (Gopherus polyphemus) when tortoises are moved from areas to be developed. The FWC has temporarily stopped this practice until effects of translocation are studied (Anna Farmer, pers. comm.). Because the translocations have a risk of disease transfer with no benefit to recipient populations, we do not support this policy of moving gopher frogs (or other commensals of gopher tortoises) to new natural areas. If the FWC considers reinstating the policy, the decision should be delayed until boundaries of ESUs are better defined with further genetic analyses, and individual gopher frogs should only be translocated to populations within their ESU, preferably only to populations within natural migration distance (1–5 km; reviewed in USFWS, 2012).

ACKNOWLEDGMENTS
This work was supported by the United States Fish and Wildlife Service and by the Kentucky National Science Foundation EPSCoR Environmental Genomics Initiative. We especially want to recognize L. LaClaire of the USFWS for all of her efforts in the conservation of gopher frogs. We thank the following for tissue sample collection: M. Bailey, M. Braid, A. Braswell, A. Davis, D. Franz, B. Halstead, D. Jackson, J. Jensen, G. Johnson, S. Johnson, L. LaClaire, B. Mansell, B. Means, N. Mills, P. Moler, J. Falis, D. Rostel, M. Sisson, L. Smith, D. Stevenson, K. Toal, J. Willson, and K. Wood.

LITERATURE CITED
Goebel, J. R., M. M. Donnelly, and M. E. Atz. 1999. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Molecular Phylogenetics and Evolution 11:163–199.